📱 eBook en inglés INTERPRETABILITY AND EXPLAINABILITY IN AI USING PYTHON: DECRYPT AI DECISION-MAKING USING INTERPRETABILITY AND EXPLAINABILITY WITH PYTHON TO BUILD RELIABLE MACHINE LEARNING SYSTEMS

ARUNA CHAKKIRALA

ORANGE EDUCATION PVT LTD - 9789348107749

Programación y lenguajes Otros lenguajes

Sinopsis de INTERPRETABILITY AND EXPLAINABILITY IN AI USING PYTHON: DECRYPT AI DECISION-MAKING USING INTERPRETABILITY AND EXPLAINABILITY WITH PYTHON TO BUILD RELIABLE MACHINE LEARNING SYSTEMS

Demystify AI Decisions and Master Interpretability and Explainability Today
Key Features ● Master Interpretability and Explainability in ML, Deep Learning, Transformers, and LLMs ● Implement XAI techniques using Python for model transparency ● Learn global and local interpretability with real-world examples
Book Description Interpretability in AI/ML refers to the ability to understand and explain how a model arrives at its predictions. It ensures that humans can follow the models reasoning, making it easier to debug, validate, and trust.
Interpretability and Explainability in AI Using Python takes you on a structured journey through interpretability and explainability techniques for both white-box and black-box models.
You’ll start with foundational concepts in interpretable machine learning, exploring different model types and their transparency levels. As you progress, you’ll dive into post-hoc methods, feature effect analysis, anchors, and counterfactuals—powerful tools to decode complex models. The book also covers explainability in deep learning, including Neural Networks, Transformers, and Large Language Models (LLMs), equipping you with strategies to uncover decision-making patterns in AI systems.
Through hands-on Python examples, you’ll learn how to apply these techniques in real-world scenarios. By the end, you’ll be well-versed in choosing the right interpretability methods, implementing them efficiently, and ensuring AI models align with ethical and regulatory standards—giving you a competitive edge in the evolving AI landscape.
What you will learn ● Dissect key factors influencing model interpretability and its different types. ● Apply post-hoc and inherent techniques to enhance AI transparency. ● Build explainable AI (XAI) solutions using Python frameworks for different models. ● Implement explainability methods for deep learning at global and local levels. ● Explore cutting-edge research on transparency in transformers and LLMs. ● Learn the role of XAI in Responsible AI, including key tools and methods.

App gratuita de lectura Vivlio Casa del Libro

Ahora tu lectura es multidispositivo, con la App Vivlio Casa del Libro, puedes tener todos tus libros en tu tablet y smartphone. Aprovecha cualquier momento para seguir disfrutando de las lecturas que más te gustan.

Ver más

Ficha técnica


Editorial: Orange Education Pvt Ltd

ISBN: 9789348107749

Idioma: Inglés

Fecha de lanzamiento: 15/04/2025

Especificaciones del producto



Opiniones sobre INTERPRETABILITY AND EXPLAINABILITY IN AI USING PYTHON: DECRYPT AI DECISION-MAKING USING INTERPRETABILITY AND EXPLAINABILITY WITH PYTHON TO BUILD RELIABLE MACHINE LEARNING SYSTEMS (EBOOK)


¡Sólo por opinar entras en el sorteo mensual de tres tarjetas regalo valoradas en 20€*!

Léelo en cualquier dispositivo


Los eBooks más vendidos de la semana